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• TES retrieves ozone profiles from spectrally 
resolved IR radiances.

• Using both spectra and retrievals, we can examine 
the sources of variability in the outgoing flux for the 
IR ozone absorption band.
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AIRS nadir spectra principal component analysis

Huang & Yung, 2005
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SVD for cloud-free, ocean, tropics TES spectra
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Linear fits of TOA flux (W/m2) vs ozone and water vapor
N/S hemisphere SST bin ensembles, SON 2006

Contours are 2K in SST 

Ensemble sensitivity to UT O3 
for S. lat. SST= 298 to 299K

Ensemble sensitivity to H2O
for S. lat. SST= 301 to 302K



Normalized Radiative 
Forcing (W/m2/DU)

TES JJA 2006 ensemble sensitivities

Gauss et al., JGR, 2003, Radiative Forcing in 21st Century
due to ozone changes in troposphere/lower strat.

TES global, annual
(45 S to 45 N) TOA 
avg.
= 0.055 W/m2/DU
(0.017 st.dev.)

Model range 
= 0.042 - 0.052 W/m2/DU
LW clear, inst., all lats,
trop only (no strat) 



OLR reduction due to upper tropospheric ozone

TES global, annual avg = 0.48 W/m2 (0.24 std) for 45 S to 45 N
IPCC (2007) value for anthropogenic tropospheric ozone radiative forcing
= 0.35 W/m2 (range = 0.25 - 0.65)

Reduced 
OLR from 
water vapor
absorption 
in IR ozone 
band



Reduced OLR from water vapor in IR ozone band

G = σT 4 − FTOA

Greenhouse
Effect (W/m2)

A. Ravel & V. Ramanathan, Nature, 1989



Seasonal dependence of UT ozone OLR reduction
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Seasonal dependence of OLR reduction due to
water vapor in IR ozone band 



Conclusions for OLR sensitivity to tropospheric ozone

• Using TES spectra, retrieved surface & cloud properties and 
atmospheric profiles, we can investigate the processes that 
drive OLR variability.

• We estimate OLR sensitivity to ozone and water vapor by 
constructing ensemble observations binned by SST. We find 
an annual average OLR sensitivity to upper trop. ozone of 
0.055 W/m2/DU (stdev = 0.017). This is comparable to 
model estimates but with more sensitivity in the northern 
hemisphere.

• Using estimated sensitivities, we find the average OLR 
reduction = 0.48 W/m2 (stdev = 0.24 std) for upper trop. 
ozone (global, annual avg., -45 to 45 ) 
• IPCC (2007) value = 0.35 W/m2 (range = 0.25 - 0.65) for anthropogenic trop. ozone 



Future directions

• Using TES observations of OLR and ozone to test the
processes that drive OLR variability in climate models.

• Investigate OLR sensitivity for other atmospheric species
e.g. H2O, CH4, CO2 for any observation altitude/lat/lon.

-based on computed jacobians  

• Characterize OLR sensitivity for different surface &
cloud conditions

• Separate anthropogenic and natural contributions using
inverse modeling
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Radiance-to-Flux Conversion

With M = flux estimate in W/m2

L = radiance in W/m2/sr
R(θ) = anisotropy from an angular dist. model (ADM).
For LW, R depends on the viewing angle, θ.
(from ERBE references)
For now, using R=1.05 for nadir (θ = 0)

M = πL / R(θ)

Could use
season/latitude/srfc
values for R
from CERES -
range ~ 
1.03 to 1.06



TES JJA 2006
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TES JJA 2006
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Sea Surface Temperature (K) - cloud-free ocean scenes

DJF 05-06 JJA 06

MAM 06 SON 06



TOA flux and ozone for JJA 2006

UT = 500-200 hPa for |lat| < 35°
= 500-300 hPa for 35°-55°



Upper & Lower Troposphere
O3 distributions by season,
Tropics, N., S.

__ DJF 05-06   __ MAM 06
__ JJA 06 __ SON 06

Only clear-sky, ocean profiles
are included.



Bin TES measurements by Sea Surface Temperature (SST)
to isolate variability in TOA flux due to Ozone and H2O

1st 3 Singular Vectors for SON 2006, cloud-free, ocean, SST bins
S. midlat [288K to 290K] and S. tropics [301K to 302K]

Highest correlation: UT O3 (r=-0.72)

Highest correlation: SST (r=0.51)

Highest correlation: H2O (r=0.51)

Highest correlation: H2O (r=-0.73)

Highest correlation: UT O3 (r=-0.80)

Highest correlation: SST (r=0.39)
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Linear fits of TOA flux (W/m2) vs O3 (pppV)
for SST bin, N/S hemisphere ensembles, JJA_06

Ensemble sensitivity to UT O3 
for N. lat. SST= 298 to 299K


